MANUEL HARDWARE DES CARTES

CompactPCP 6U

MCXcPCI/BP et MCXcPCI/BPMR

MANUEL HARDWARE DES CARTES MCXcPCI/BP & MCXcPCI/BPMR

COPYRIGHT (©) ACKSYS 2007

Ce document contient des informations qui sont protégées par Copyright.

Tout ou partie du présent document ne pourra être reproduit, transcrit, stocké dans n'importe quel système informatique ou autre, traduit dans n'importe quelle langue et n'importe quel langage informatique sans le consentement préalable et écrit de *ACKSYS*.

MARQUES DEPOSEES ®

- *ACKSYS* est une marque déposée de *ACKSYS*.
- Windows est une marque déposée de MICROSOFT.

NOTICE

ACKSYS ® ne garantit en aucune façon le contenu du présent document et dégage son entière responsabilité quant à la rentabilité et la conformité du matériel aux besoins de l'utilisateur.

ACKSYS ® ne pourra en aucun cas être tenue pour responsable des erreurs éventuellement contenues dans ce document, ni des dommages quelle qu'en soit leur importance, du fait de la fourniture, du fonctionnement ou de l'utilisation du matériel.

ACKSYS ® se réserve le droit de réviser périodiquement ce document, ou d'en changer le contenu, sans aucune obligation pour ACKSYS ® d'en aviser qui que ce soit.

Société ACKSYS 10 rue des entrepreneurs ZA VAL Joyeux 78450 VILLEPREUX

Téléphone : 01 30 56 46 46 Télécopie : 01 30 56 12 95

Web : http://www.acksys.fr

TABLES DES MATIERES

I. I	LES CARTES MCXCPCI/BP-XX ET MCXCPCI/BPMR-XX	I-1
I.2.	Presentation	
I.2.	LES DIFFERENTS MODES D'UTILISATION	
I.2.	GARANTIE	
II.	LA CARTE MERE MCXCPCI/0	II-1
II.2.	SYNOPTIQUE	
II.2.	Configuration	
II.2.	DEMARRAGE DE LA CARTE	
II.2.	HOT SWAP	
III.	LA CARTE PCB-BP	III-1
III.2.	Configuration	III-2
IV.	LE BOITIER D'EXTENSION MCXBP	IV-1
IV.2.	Configuration	IV-2
IV.2.	INSTALLATION	IV-4
IV.2.	ATTRIBUTION DES SIGNAUX SUR LES CONNECTEURS	
IV.2.	OPTIONS MECANIQUES	
IV.2.	CARACTERISTIQUES ELECTRIQUES ET MECANIQUES	
IV.2.	HISTORIQUE DES PRINCIPALES REVISIONS	
V.	LE BOITIER D'EXTENSION MCXBPMR	V-1
V.2.	Configuration	
V.2.	Installation	
V.2.	LA CARTE MEZZANINE D'INTERFACE MR232ISO	
V.2.	LA CARTE MEZZANINE D'INTERFACE MR400ISO	
V.2.		
ANNI	EXE A POUR ECRIRE UN PILOTE DE PERIPHERIQUE	1
A.1	Generalites	
A.2	ADRESSAGE DE LA MEMOIRE DOUBLE ACCES	
A.3	ADRESSAGE DES REGISTRES D'ENTREES SORTIES	
A.4 A.5	INTERRUPTION CARTE VERS P.C. INTERRUPTION P.C. VERS CARTE	
	EXE B POUR PROGRAMMER DANS LA CARTE	
B.1	ADRESSAGE DES REGISTRES DU BOITIER MCXBP OU MCXBPMR	
B.2	INSTALLATION DE LA CARTE COMPACT FLASH	
ANNI	EXE C FICHE ERREUR	1

I. LES CARTES MCXCPCI/BP-XX ET MCXCPCI/BPMR-XX

I.2. PRESENTATION

Vous venez de faire l'acquisition d'une carte de communication intelligente de la gamme MCXcPCI format CPCI 6 U Hot Swap, et nous vous en remercions.

Les cartes de cette gamme ont été étudiées pour être compatibles avec toutes les machines disposant d'un bus CPCI 5V conforme à la norme CompactPCI Specification PICMG 2.0 et CompactPCI Hot Swap specification PICMG 2.1.

L'objet de cette documentation est de fournir les caractéristiques techniques des cartes MCXcPCI/BP-08 à MCXcPCI/BP-64 (appelées ci-après MCXcPCI/BP) et MCXcPCI/BPMR-08 à MCXcPCI/BPMR-64 (appelées ci-après MCXcPCI/BPMR).

Ces cartes ont une architecture semblable à celle d'un PC AT muni d'un microprocesseur 486. Elles disposent de leur propre microprocesseur (Pentium 75 100 MHz) pour assurer la gestion des lignes de communication. Elles disposent d'une mémoire de 8 Mo extensible à 16 Mo, d'un «watchdog» matériel, d'un contrôleur clavier, d'une EEPROM de 512 Ko contenant un BIOS compatible PC et d'un support pour une carte Compact FLASH type 1.

La carte MCXcPCI/BP-xx est construite à partir de l'assemblage de la carte mère MCXcPCI/0, d'une carte mezzanine PCB-BP et de 1 à 8 boîtiers déportés (en face avant) ref. MCXBP (1 boîtier contient 8 voies). Selon le nombre de boîtiers connectés, cette carte offre 8, 16, 24, 32, 40, 48, 56 ou 64 voies série synchrones ou asynchrones RS232 ou RS422.

A partir de 16 lignes RS422 (2 boîtiers MCXBP), ou 24 lignes RS232 (3 boîtiers MCXBP), une alimentation supplémentaire (MCX-PWS) est nécessaire.

La carte MCXcPCI/BPMR-xx est construite à partir de l'assemblage de la carte mère MCXcPCI/0, d'une carte mezzanine PCB-BP et de 1 à 8 boîtiers déportés (en face avant) ref. MCXBPMR (1 boîtier contient 8 voies). Suivant le nombre de boîtiers connectés, cette carte offre 8, 16, 24, 32, 40, 48, 56 ou 64 voies série synchrones ou asynchrones avec interfaces électriques modulaires isolées.

A partir de 16 lignes (2 boîtiers MCXBPMR), une alimentation supplémentaire (MCX-PWS) est nécessaire.

Les pièces détachées, options et extensions de ces modèles sont les suivantes :

•	MCXBP	Boîtier 8 voies série synchrones ou asynchrones avec SCC 85C30 et interfaces RS232, RS422.
•	MCXBPMR	Boîtier 8 voies série synchrones ou asynchrones avec SCC 85C30 et interfaces modulaires isolées (RS232, RS422, RS485, Boucle de courant)
•	MCXBP85230	Boîtier 8 voies synchrones ou asynchrones avec SCC 85230 (version bufferisée du 85C30) et interfaces RS232, RS422.
•	MR233ISO	Carte d'interface 232 isolé pour MCXBPMR
•	MR400ISO	Carte d'interface 422/485 isolé pour MCXBPMR
•	MRBdC	Carte d'interface Boucle de courant isolé pour MCXBPMR
•	MCX-CABLE	Câble de raccordement d'un boîtier à la carte
•	MCX-PWS	Alimentation auxiliaire pour boîtiers MCXBP ou MCXBPMR
•	MCX-RACK 19"	Rack externe 19"2U avec alimentation permettant le montage d'une carte MCX-00 en fonctionnement autonome.
•	MCXBP-PLQ	Plaque métallique permettant de fixer un ou des MCXBP sur un mur et d'augmenter la rigidité de l'ensemble.
•	MCXBP-RACK	Face avant de Rack 19" permettant de fixer un MCXBP (équipé de MCXBP-PLQ) sur un Rack 19". Le kit MCXBP-RACK permet une installation verticale des MCXBP (environ 3 U par MCXBP ou MCX-PWS). Un MCXBP-RACK est nécessaire par MCXBP-PLQ.
•	BC20MA-INT	Adaptateur 4 canaux boucle de courant à isolement galvanique pour boîtier MCXBP. Nécessite une alimentation type PWS-1 ou PWS-3.
•	AD422/485-INT	Adaptateur 4 canaux RS422/485 à isolement pour boîtier MCXBP. Nécessite une alimentation type PWS-2 ou PWS-3.

I.2. LES DIFFERENTS MODES D'UTILISATION

La carte propose différents modes d'utilisation programmable via les cavaliers JP2.

JF	2	Mode
2-3 fermé	5-6 fermé	Built-in Firmware
1-2 fermé	5-6 fermé	Stand Alone
2-3 fermé	4-5 fermé	Réservé ACKSYS
1-2 fermé	4-5 fermé	MCXDOS

Le mode BUILT-IN FIRMWARE qui offre

- L'accès aux ports de communications en mode asynchrone ou synchrone depuis le P.C. sans programmation dans la carte.
- Un système de programmation de la FLASH EPROM pour mise à jour du firmware embarqué ACKSYS.
- Un système de téléchargement d'applications clients au format MCS-86.

Le mode MCXDOS qui permet

Le développement et l'exploitation d'applications clients embarquées dans la carte. Les applications embarquées DOS peuvent être chargées dynamiquement depuis le P.C, les autres applications nécessitent l'utilisation d'un disque compact FLASH.

Le mode STAND ALONE qui permet

L'exécution par la carte, d'applications embarquées dans un disque compact flash, de façon autonome sans intervention du P.C. Ce mode est typiquement utilisé lorsque la carte est montée dans un RACK.

B.1.1 Le mode « Built-In Firmware »

Le mode de programmation « Built-In Firmware » permet d'exploiter la carte depuis le P.C. en s'appuyant sur les fonctionnalités du firmware ACKSYS intégré dans la flash Eprom de la carte. Pour les systèmes d'exploitation les plus courants, ACKSYS fournit un pilote de périphérique s'exécutant sur le P.C hôte, offrant à votre applicatif P.C. une interface conforme au système d'exploitation P.C., masquant ainsi tous les détails du dialogue P.C carte implémenté dans le firmware.

Deux firmware ACKSYS sont disponibles :

- Le firmware « Logiciel de base », embarqué en standard sur toutes les cartes de la gamme MCXcPCI
- Le firmware «logiciel multiprotocole », embarqué en standard sur les cartes MCXcPCI/570-x(-R) et WAN-HDLC/4C, optionnel sur les cartes MCXcPCI/S et MCXcPCI/BP(MR)-X et non disponible pour la carte MCXcPCI/U-X et MCXcPCI/M128F

Les fonctionnalités offertes, avec le FIRMWARE LOGICIEL DE BASE sont les suivantes :

- Accès aux ports de communications en mode asynchrone, limité aux cartes MCXcPCI/S et MCXcPCI/BP(MR)-X
- Système de programmation de la FLASH EPROM pour mise à jour du firmware, disponible sur toutes les cartes de la gamme MCXcPCI
- Système de téléchargement de fichiers au format MCS-86, disponible sur toutes les cartes de la gamme MCXcPCI

Les fonctionnalités offertes, avec le **FIRMWARE LOGICIEL MULTIPROTOCOLE** sont les suivantes :

- Accès aux ports de communications en mode asynchrone et synchrone, excepté la carte MCXcPCI/U-X et MCXcPCI/M128.

Notez que toutes ces fonctionnalités sont aussi dépendantes du pilote de périphérique ACKSYS s'exécutant sur le P.C hôte. Autrement dit, il est conseillé de consulter la documentation s'y rapportant pour connaître les services supportés.

B.1.2 Le mode MCXDOS

Ce mode permet le **développement et l'exploitation d'applications embarquées** s'exécutant sous un système d'exploitation de votre choix, dans le mesure où il ne nécessite ni écran, ni intervention clavier/souris pour démarrer l'application.

LE DEVELOPPEMENT D'APPLICATIONS,

DANS L'ENVIRONNEMENT DOS COTE CARTE,

DANS L'ENVIRONNEMENT DOS, WINDOWS 9X COTE P.C.,

nécessite le kit d'aide au développement MCXDOS.

Les outils de développement restent les outils standards du marché.

En phase d'exploitation dans ces environnements, l'application embarquée sera chargée depuis le P.C grâce au logiciel AUTOMCX¹. Notez que le logiciel AUTOMCX existe aussi pour le système d'exploitation Windows, permettant ainsi d'exploiter la carte depuis cet environnement P.C.

LE DEVELOPPEMENT D'APPLICATIONS DANS DES ENVIRONNEMENTS DIFFERENTS, nécessitent les fournitures suivantes :

Une carte compact FLASH pour stocker le système d'exploitation côté carte Un clavier connecté à la carte

Le logiciel MCXSPY (Emulation écran VGA en mode texte de la carte sur le P.C) Les outils de développement restent les outils standards du marché.

Il deviendra ainsi possible, par exemple de développer depuis un P.C sous Windows NT une application QNX dans la carte avec les outils de développement les plus performants. Attention l'environnement côté carte est restreint aux systèmes d'exploitations non graphiques et l'environnement côté P.C limité aujourd'hui à DOS, Windows 95/98, Windows 32 bits & QNX.

B.1.3 Le mode stand-alone

Dans ce mode, la carte démarre sur le disque compact FLASH pour ensuite exécuter l'application embarquée. C'est donc un mode d'exploitation de la carte, et non de développement.

¹ Intégré dans le kit MCXDOS

I.2. GARANTIE

La période de garantie est définie par nos conditions générales de garantie c'est-à-dire :

Garantie de 5 ans pièces¹ et main-d'œuvre contre tout vice de fabrication ou de fonctionnement à l'exception des pannes engendrées par une utilisation non conforme ou bien par l'action excessive d'un agent ou d'une circonstance naturelle.

Les réparations sous garantie sont effectuées en nos locaux dans un délai moyen de cinq jours ouvrés.

AVERTISSEMENT

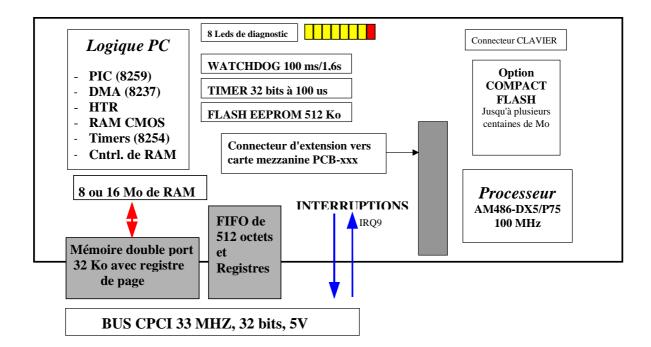
- ♦ Afin d'assurer un fonctionnement correct de la carte, vérifiez que la batterie est correctement connectée.
- ♦ Le courant électrique provenant de l'alimentation, du téléphone et des câbles de transmission, peut présenter un danger.
 - Connectez et déconnectez les câbles uniquement lorsque la machine dans laquelle est installée votre carte est hors tension.
 - Ne touchez pas aux câbles pendant un orage.

DANGER

NE JAMAIS BRANCHER OU DEBRANCHER LES CONNECTEURS LORSQUE LA MACHINE EST SOUS TENSION

Les pannes engendrées par une manipulation répétée des connecteurs SUB-D avec la machine sous tension sont fréquentes et détruisent le plus souvent les amplificateurs de ligne.

La plupart des pannes sont facilement évitables à condition de respecter la règle énoncée cidessus.


RESPECTEZ LA!

¹ A l'exception de la batterie lithium qui n'est pas garantie.

II. LA CARTE MERE MCXCPCI/0

La carte doit impérativement être installée dans un emplacement CPCI 6U de la machine, conforme à la norme CompactPCI Specification PICMG 2.0.

II.2. SYNOPTIQUE

La configuration hardware de la carte (les adresses de la mémoire double port, les adresses des registres d'I/O et l'interruption de la carte MCXcPCI/O vers PC) est fixée par le BIOS PCI du PC au moment du démarrage du PC. Attention, cette configuration peut changer si vous déplacez la carte dans un autre slot CPCI. Notez qu'il est possible avec certains PC de fixer l'interruption utilisée par la carte.

II.2. CONFIGURATION

Une sérigraphie sur un film plastique attaché à la carte reprend la configuration de chacun des cavaliers. Les configurations à la livraison sont grisées dans les tableaux suivants.

Cavalier JP1

JP1	
1-2 fermé	Simulation batterie active
1-2 ouvert	Simulation batterie inactive

JP1	
3-4 fermé	Batterie Connectée
3-4 ouvert	Batterie déconnectée

Attention, la configuration JP1 : 1-2 fermé et 3-4 fermé est interdite.

Cavalier JP2

JP2		Mode		
2-3 fermé	5-6 fermé	Firmware		
1-2 fermé	5-6 fermé	Stand Alone		
2-3 fermé	4-5 fermé	Réservé ACKSYS		
1-2 fermé	4-5 fermé	MCXDOS		

Cavalier JP3

JP3	Watchdog		
1-2 fermé	activé		
2-3 fermé	désactivé		

JP3	Action RESET PCI
4-5 fermé	RESET MCXcPCI
5-6 fermé	Aucune

II.2. DEMARRAGE DE LA CARTE

A la mise sous tension, la carte MCXcPCI effectue un autotest avec affichage sur le groupe de 8 leds du test en cours d'exécution.

En cas d'erreur, les leds conservent leur état et permettent d'identifier immédiatement la cause de l'erreur.

La signification des différents codes est la suivante :

LED	0	1	2	3	4	5	6	7
	\bigcap	\bigcap		\bigcap		\bigcirc		
	\bigcirc	\bigcirc	\bigcup	\bigcirc	\bigcirc	\bigcup	\bigcirc	
Bit	0	1	2	3	4	5	6	7

Code 01h Erreur registre de flags du CPU.
Code 02h Erreur registre du CPU.
Code 03h Erreur de checksum mémoire BIOS.
Code 04h Erreur sur les contrôleurs de DMA.
Code 05h Erreur sur les TIMERS système.
Code 06h Erreur dans le test d'adresse de 1 ^{er} 64 K
ou bien mauvaise configuration. mémoire.
Code 07h Erreur dans le test de 1 ^{er} 64 K ram.
Code 08h Erreur sur contrôleur d'INT.
Code 09h Détection d'INT non attendue.
Code 0Ah
Code 0Bh CPU déjà en mode protégé.
Code 0Ch Erreur dans registre. de page DMA.
Code 0Dh
Code 0Eh Erreur sur le contrôleur du clavier.
Code 0Fh Impossible d'entrer en mode protégé.
Code 10h Erreur sur registres GDT ou IDT.
Code 11h Erreur sur registre LDT.
Code 12h Erreur dans le registre de tâche.
Code 13h Erreur sur instruction LSL.
Code 14h Erreur sur instruction LAR.
Code 15h Erreur sur VERR / VERW.
Code 16h Erreur sur ligne d'adresse A20.
Code 17h Exception non attendue.
Code 18h Shutdown pendant le test mémoire.
Code 19h Erreur checksum Copyright.
Code 1Ah Erreur checksum paramètres.
Code C0h Erreur dans le test mémoire.
Code C1h Erreur sur signal IO/CHECK.
Code C2h
Code C4h « Bus time out ».

Les codes erreurs suivants ne sont significatifs qu'en mode «Built-In Firmware» :

Code 81h	. Erreur sur UART, SCC ou SCA.
Code 82h	. Erreur mémoire double accès.
Code 83h	. Erreur TRAP non attendue.
Code 84h	. Erreur mémoire tampon.
Code 85h	. Erreur checksum firmware.
Code 86h	. Erreur batterie Lithium.
Code 87h	. Erreur interruption MCXcPCI vers PC.
Code 88h	. Erreur « watchdog ».
Code 89h	. Erreur accès FIFO, flags ou Int, côté
	MCXcPCI ou erreur lecture Fifo par
	MCXcPCI.
Code 8Bh	. Erreur SCC pendant test DMA haute vitesse.
Code 8Ch	. Faute de protection générale.
Code 8Dh	. Erreur taille mémoire.
Code 8Eh	. Interruption NMI reçue.

En mode Built-In Firmware, lorsque l'auto-test a été effectué correctement, les leds 0 à 7 s'allument et s'éteignent successivement indiquant que la carte attend maintenant son code de départ

- "RUN 01" : lancement du logiciel de base
- "RUN 02" : lancement du logiciel multiprotocole

En mode MCXDOS, lorsque l'auto-test a été effectué correctement, les leds 0 à 7 s'éteignent indiquant que la carte attend maintenant son code de départ

- "RUN 99": boot en mode MCXDOS.
- "RUN 96": boot sur le disque Compact Flash.

En mode Stand-Alone, lorsque l'auto-test a été effectué correctement, les leds 0 à 7 s'éteignent, et la carte démarre automatiquement sur le disque Compact Flash.

Si l'une des erreurs, citées ci-dessus, est rencontrée à la mise sous tension de la carte, il est conseillé de vous adresser à votre revendeur qui prendra toutes les dispositions utiles afin de réparer le matériel dans le meilleur délai.

II.2. HOT SWAP

La carte MCXcPCI répond aux spécifications CompactPCI Hot Swap specification PICMG 2.1. Elle est compatible avec les plateformes de type « Hight availability », « Full » et « Basic » Hot swap.

La carte MCXcPCI est dotée d'un contrôleur hot swap qui sécurise l'insertion et l'extraction « à chaud » de la carte dans des systèmes CompactPCI compatibles « hot plug ».

La MCXcPCI intègre des circuits de coupure qui protègent les alimentations +12V, +5V, +3.3V, et -12V en surintensité (court-circuit). Elle peut être insérée dans un système actif, ou retirée, sans jamais provoquer la détérioration du P.C hôte ou de la carte elle même

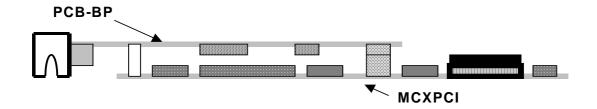
L'espace de configuration PCI de la carte MCXcPCI intègre le « Hot Swap Register Block (HS_CSR) » ce qui permet au P.C. hôte, si il possède un service de gestion Hot Swap :

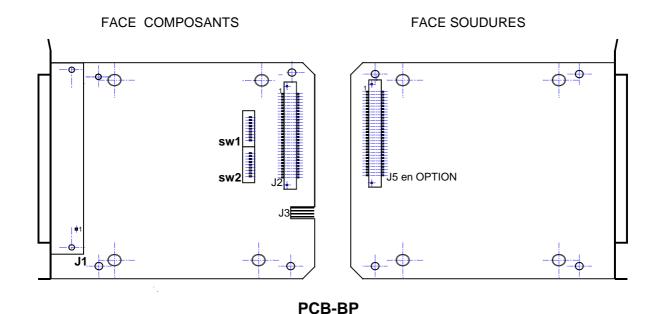
- d'autoriser les extractions, en commandant la LED bleu en façade de la carte (Led allumée => extraction autorisée).
 - de configurer et d'attribuer les ressources PCI à la carte suite à l'insertion, afin de la rendre fonctionnelle.

SEQUENCE D'INSERTION:

- Dévérouiller les fixations en façade (vers l'extérieur)
- Insérer la carte dans un slot
- Verouiller les fixations en prise sur le chassis.
- La carte doit démarrer la séquence d'autotest.

SI LA LED BLEU RESTE ALLUMEE, C'EST QU'UN PROBLEME A ETE DETECTE SUR LA CARTE ET GENE SA MISE EN ROUTE.


SEQUENCE D'EXTRACTION:


- Déverouiller légèrement les fixations sans sortir la carte du slot
- Attendre que la LED bleu s'allume
- Retirer la carte

Attention, la fonctionnalité HOTSWAP ne pourra être exploitée que si le driver côté P.C (Windows, LINUX ...) gère cette fonction.

III. LA CARTE PCB-BP

La carte PCB-BP est une simple carte d'interface permettant la connexion du 1^{er} boîtier MCXBP ou MCXBPMR à la carte MCXcPCI/0. Le boîtier est toujours connecté en face avant.

Connecteur J1: Ce connecteur, accessible à l'extérieur du P.C., permet par l'intermédiaire du câble MCX-CABLE fourni, de connecter le premier boîtier d'extension à la carte MCXcPCI/BP-00.

Connecteur J2: Ce connecteur permet de brancher la PCB-BP sur la carte MCXcPCI/0.

Connecteur J3: Ce connecteur permet de brancher une alimentation.

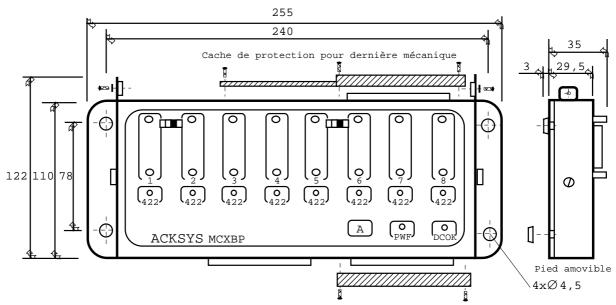
J3-1	+12V
J3-2	GND
J3-3	GND
J3-4	+5V

Connecteur J5: Connecteur optionnel prévu pour connecter une seconde extension PCB-xx.

III.2. CONFIGURATION

Attention, les commutateurs SW1 et SW2 sont configurés en usine et réservés à l'usage d'ACKSYS.

Commutateur SW1 : Ce commutateur permet d'attribuer à chaque boîtier MCXBP ou MCXBPMR un signal d'interruption.


SW1-1	ON	BP8 sur IRQ14
SW1-2	OFF	(MCXcPCI sans compact
SW1-3	OFF	flash)
SW1-1	OFF	BP8 sur IRQ15
SW1-2	OFF	(MCXcPCI avec compact
SW1-3	ON	flash)
SW1-4	ON	BP7 sur IRQ12
SW1-5	ON	BP6 sur IRQ11
SW1-6	ON	BP5 sur IRQ7
SW1-7	ON	BP4 sur IRQ6
SW1-8	ON	BP3 sur IRQ5
SW1-9	ON	BP2 sur IRQ4
SW1-10	ON	BP1 sur IRQ3

Commutateur SW2 : Ce commutateur permet d'attribuer à au plus 3 voies, un canal DMA en émission et un canal DMA en réception.

SW2-1		Non utilisé
SW2-2		Non utilisé
SW2-3	ON	Récepteur de la 3 ^{ème} voie du boîtier r sur canal DMA 7
SW2-4	ON	Emetteur de la 3 ^{ème} voie du boîtier r sur canal DMA 6
SW2-5	ON	Récepteur de la 2 ^{ème} voie du boîtier q sur canal DMA 5
SW2-6	ON	Emetteur de la 2 ^{ème} voie du boîtier q sur canal DMA 3
SW2-7	ON	Récepteur de la 1 ^{ère} voie du boîtier p sur canal DMA 2
SW2-8	ON	Emetteur de la 1 ^{ère} voie du boîtier p sur canal DMA 1

Le choix de p, q et r se fait par logiciel (voir registre configuration DMA dans l'annexe « Programmer dans la carte »).

IV. LE BOITIER D'EXTENSION MCXBP

Cache de protection pour première mécanique

EXTENSION MCX-BP

COTES EN mm

POIDS = 970 g + 40 g (caches de protection connecteurs)

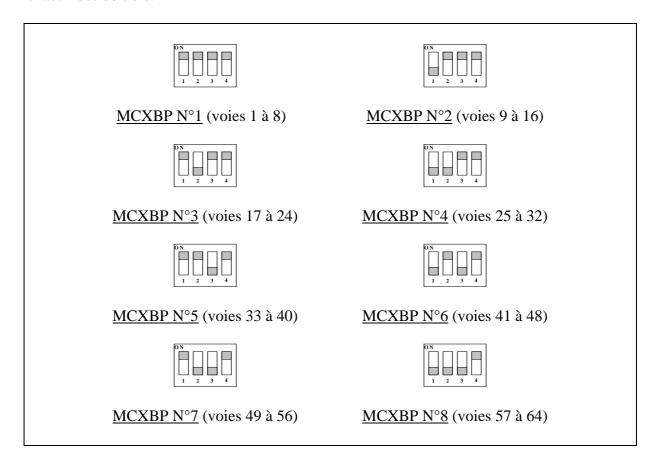
Le dispositif de raccordement MCXBP (RS232/RS422) est un sous-ensemble complètement indépendant de la carte MCXcPCI/BP.

Il intègre toute la logique de communication (en particulier les unités de communication ZILOG 85C30) ainsi que le système d'amplification des signaux pour pouvoir satisfaire aux normes RS232 et RS422.

D'autre part, plusieurs dispositifs assurent la protection du boîtier MCXBP ; il y a en particulier, des fusibles ré-armables pour la protection contre les courts-circuits et des « TVS » (Transient Voltage Suppressor) pour la protection contre les surtensions ; ces derniers assurent une remarquable protection contre les décharges électrostatiques.

Le boîtier MCXBP permet d'ajouter 8 lignes de communication supplémentaires à la carte MCXcPCI/BP (jusqu'à 8 boîtiers d'extension peuvent être raccordées à une carte MCXcPCI pour totaliser 64 voies).

Le kit de base se compose :


- d'un dispositif de raccordement supplémentaire 8 lignes,
- d'un kit de vis et capots de protection.

IV.2. CONFIGURATION

B.1.1 Les commutateurs

Le boîtier MCXBP dispose en face arrière de deux blocs de commutateurs. Le premier, qui comporte 4 mini-commutateurs permet d'affecter un numéro d'unité au boîtier. Le second, qui comporte 8 mini-commutateurs permet d'accorder la ligne de communication entre la carte MCXcPCI/BP et l'ensemble formé par les boîtiers MCXBP.

Les illustrations ci-dessous donnent la configuration du bloc de 4 mini-commutateurs pour chacun des boîtiers.

Le bloc de huit mini-commutateurs du dernier boîtier de connexion en ligne doit absolument avoir tous les mini-commutateurs en position ON. Les blocs de huit mini-commutateurs sur les autres boîtiers doivent être OFF.

Le point sur les deux commutateurs situés en face avant ne doit pas être visible, sauf pour des cas particuliers (voir paragraphe « Attribution des signaux sur les connecteur »).

B.1.2 Vérification de la configuration

Vérification de la configuration au niveau des dispositifs de connexion MCXBP

Chaque dispositif de connexion huit lignes MCXBP possède 10 témoins lumineux.

Huit témoins jaunes (un par voie) indiquent dans quel mode se trouvent configurées les 8 voies de la carte MCXcPCI/BP-xx :

- Témoin jaune allumé....... Voie associée configurée en mode RS422.
- Témoin jaune éteint....... Voie associée configurée en mode RS232.

Le témoin vert indique, lorsqu'il est allumé, qu'une tension est présente sur le boîtier en provenance du P.C. ou de l'alimentation MCX-PWS.

Il peut s'éteindre pour les causes suivantes :

- Mauvaise connexion du câble de raccordement.
- Panne sur les tensions +12V et -12V du système.
- Court-circuit sur un connecteur SUB D 25 points.
- Surcharge des alimentations sur les SUB D 25 points.

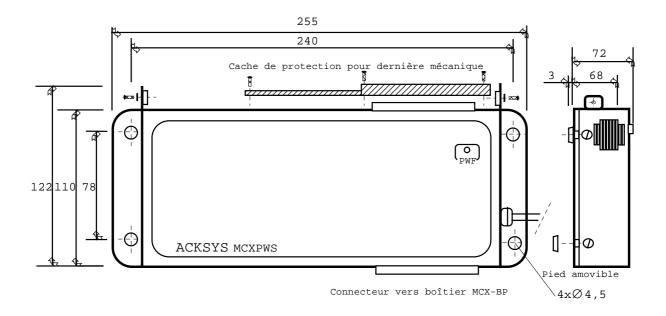
En mode built-in firmware uniquement, le témoin rouge indique, lorsqu'il est allumé en permanence, que le nombre de boîtiers MCXBP installés dépasse deux ou bien que le nombre de lignes RS422 activées simultanément dépasse huit ; il faut, par conséquent, connecter une alimentation externe de type MCX-PWS.

Vérification de la configuration en mode built-in firmware

Si, lors de l'autotest effectué à la mise sous tension, les leds de la carte MCXcPCI/0 affichent le code binaire 81h alors c'est que la configuration des boîtiers d'extension MCXBP n'est pas correcte. Si un autre code d'erreur est affiché, il est indispensable d'arrêter la machine et de consulter votre revendeur qui prendra toutes les dispositions pour vous dépanner le plus rapidement possible.

Vérification de la configuration en mode mcxdos

Aucune vérification n'est effectuée sur la configuration des boîtiers MCXBP si la carte MCXcPCI/BP est configurée en mode MCXDOS ou en mode « stand-alone ».

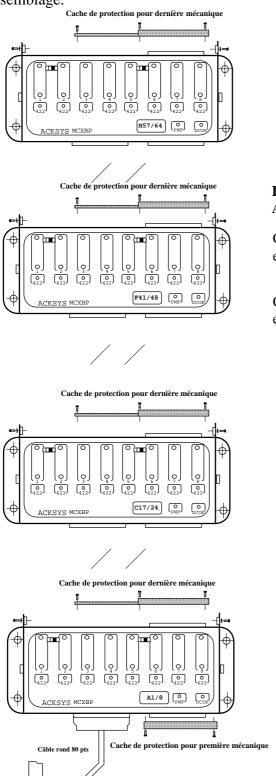

IV.2. INSTALLATION

Une fois la carte montée dans la machine, il convient de raccorder (**hors tension**) le câble (rond 80 points blindé) entre la carte MCXcPCI/BP et le premier dispositif de connexion MCXBP.

Si vous envisagez de raccorder plus de deux boîtiers de connexion MCXBP ou bien si vous avez l'intention d'utiliser plus de huit lignes RS422 simultanément, vous devez vous procurer l'alimentation auxiliaire externe MCX-PWS qui évitera de surcharger l'alimentation de votre système (cette alimentation est automatiquement intégrée dans les configurations MCXcPCI/BP- 24, 32, 40, 48, 56 et 64 voies).

Cette alimentation se présente sous la forme d'un boîtier de connexion et doit être insérée au milieu de la chaîne formée par les boîtiers MCXBP. Cette alimentation doit enfin être raccordée au secteur.

NE JAMAIS BRANCHER OU DEBRANCHER LES UNITES ENTRE ELLES LORSQUE VOTRE SYSTEME OU L'ALIMENTATION MCX-PWS EST SOUS TENSION.


ALIMENTATION AUXILIAIRE MCXPWS

COTES EN mm

POIDS = 1728 g + 22 g (caches de protection connecteurs)

ASSEMBLAGE DE 1 A 8 BOITIERS

A partir d'une configuration 16 voies, chaque boîtier MCXBP est identifié par un code (A1/8, B9/16, C17/24 ...) apposé sur une étiquette collée en face avant, facilitant ainsi l'ordre d'assemblage.

Carte MCX-00

INSERER L'ALIMENTATION MCX-PWS AUX EMPLACEMENTS SUIVANTS :

Cas de 2 à 4 boîtiers MCX-BP : en dernière position

Cas de 5 à 8 boîtiers : entre les boîtiers D25/32 et E33/40

T	V '	2	Δ,	rTi	RIB	TT	M	V I	TE	3 6	T	ZN.	JA	TIV	7	TI	P 1	F	2 (n	NI	JE	CT	ועי	TD	C
	V -	۷.	\boldsymbol{H}		ХID	UI	ш	N I	JEG) (у,	TI.	VН		, .,		•		, l	~ ,		N F	LΙ	P.		

	Connecteur SUBD25 femelle							
Broche n°	Direction du signal	Description	Norme CCITT V 24		Broche n°	Direction Du Signal	Description	Norme CCITT V 24
1	I	PGND	101		14	О	- TXCLOCK	
2	О	TXDATA	103		15 ²	О	TXCLOCK (Rev. <e)< td=""><td>113</td></e)<>	113
3	I	RXDATA	104			I	TXCLK-I (Rev.≥E)	114
4	О	RTS	105		16	О	+ TXCLOCK	
5	I	CTS	106		17	I	RXCLOCK	115
6	•	***************************************			18	•		
7	I	MASSE 0V	102		19	I	- RXCLOCK	
8	I	CD	109		20	О	DTR	108.2
9	О	+ 12 VDC			21	I	- RXDATA	
10	О	- 12 VDC			22	I	RI	125
11	I	+ RXCLOCK			23	I	+ RXDATA	
12	О	- TXDATA			24	•	(Rev <e)< td=""><td></td></e)<>	
13	О	+ TXDATA				О	TXCLOCK (Rev. ≥E)	113
				•	25	•		

I : Signaux en entrée / O : Signaux en sortie

ATTENTION

- LES SIGNAUX RS422 +RXCLOCK, -RXCLOCK, +TXCLOCK, -TXCLOCK NE SONT DISPONIBLES QUE SUR LES CANAUX 1 A 3.
- LE BROCHAGE DU CONNECTEUR SUBD 25 NE REPOND A AUCUNE NORME, PAR CONSEQUENT IL EST ABSOLUMENT INDISPENSABLE DE VERIFIER LE CABLAGE DE CHACUNE DES BROCHES.
- POUR UTILISER LES ADAPTATEURS ACKSYS: AD422/485-INT ET BC20MA-INT, IL EST ABSOLUMENT INDISPENSABLE DE CONNECTER LE SIGNAL AUX -12V (POINT APPARENT SUR LE MINI-COMMUTATEUR).

Les sorties + 12 VDC et - 12 VDC sont protégées par des fusibles thermiques ré-armables (20 secondes); l'intensité maximale totale admissible pour un boîtier de 8 lignes est de 750 mA sur chaque tension (à répartir sur le nombre de voies chargées).

² Sur les ports 1 et 5, les deux mini-commutateurs, situés en face avant d'un boîtier d'extension MCXBP, permettent de choisir pour la broche 15 entre les deux signaux suivant : TXCLOCK (ou TXCLK-I suivant la révision du MCXBP) et - 12VDC. Le signal TXCLOCK (ou TXCLK-I suivant la révision du MCXBP) est toujours actif sur les autres ports.

Le signal -12VDC est activé lorsque le point est apparent sur le mini-commutateur.

IV.2. OPTIONS MECANIQUES

La tenue mécanique entre les boîtiers MCXBP et MCX-PWS peut être renforcée par l'utilisation de raidisseurs :

- **Support BP modulo 2**: fixation pour 2 boîtiers (MCXBP ou MCX-PWS).
- **Support BP modulo 3**: fixation pour 3 boîtiers (MCXBP ou MCX-PWS).

Ces raidisseurs peuvent être, eux-mêmes, interconnectés pour supporter une chaîne de 8 boîtiers MCXBP et un boîtier MCX-PWS.

Les boîtiers MCXBP et MCX-PWS peuvent être montés en RACK 19" avec les supports suivants :

- **Face avant 19"** modulo 2 (<5U).
- **Face avant 19"** modulo 3 (<8U).
- Face avant 19" connecteur (pour le passage du câble rond) (<3U).

482,700 MCX-PLQ3 12.500 **POWER** MCX-BP-RACK **ACKSYS** MCXPWS 330,100 MCX-BP+ 430.900 MCX-BP+ 20,100 CAUTION ! ATTENTION! NE PAS CONNECTER NI DECONNECTER SOUS DISCONNECT WHEN POWER

Montage de 2 MCXBP"et 1 alimentation MCX-PWS dans un modulo 3 avec face avant 19"

Un boîtier MCXBP isolé peut être monté en RACK 19" avec le support suivant :

• MCXBP-RACK (3U).

Une carte MCXcPCI/BP-00, en fonctionnement autonome, et son alimentation peuvent être montés en RACK 19" avec le support suivant :

• MCX-RACK 19" (2U).

et le boîtier à l'extérieur ou avec une face avant ou un support BP.

IV.2. CARACTERISTIQUES ELECTRIQUES ET MECANIQUES

CONSOMMATION			DIMENSIONS	CONDITIONS D'UTILISATION			
+ 5 V DC	+ 12 V DC	- 12 V DC	Longueur x Largeur	Humidité relative (non condensée)	Température	Stockage	
0,8 A max / 4 W	83 mA max / 1 W	83 mA max / 1 W	255mm x 110mm	95% à +25°C	-5 à +65°C	-25 à +70°C	

IV.2. HISTORIQUE DES PRINCIPALES REVISIONS

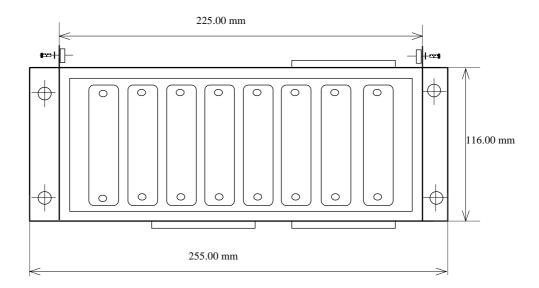
- Boîtier MCXBP REV D: Un oscillateur supplémentaire à 14,7456 MHz est

implanté.

- Boîtier MCXBP REV E : Accès au signal RING INDICATOR en mode synchrone.

Déplacement du signal RS232 TXCLOCK de la broche 15

vers la broche 24.


La broche 15 reçoit un signal RS232 d'horloge d'émission

entrant TXCLK_I.

- Boîtier MCXBP REV E Particularité: vitesse maximale de transmission en

à partir du N° de série 2000 : RS232 = 256Kb/s

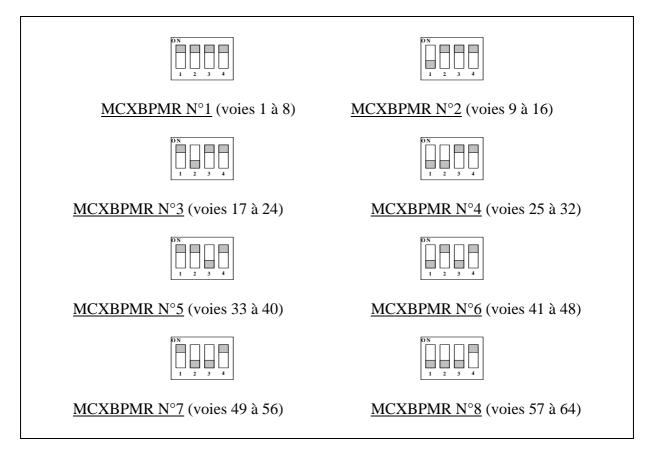
V. LE BOITIER D'EXTENSION MCXBPMR

Le dispositif de raccordement MCXBPMR est un sous-ensemble complètement indépendant de la carte MCXcPCI/BP-00.

Il intègre les unités de communication ZILOG 85C30 sur une carte fond de panier. Le système d'amplification des signaux et les systèmes de protection de ligne sont implantés sur une carte mezzanine pour chaque voie. Au total, huit cartes mezzanines sont nécessaires pour former un boîtier 8 voies complet.

Ce boîtier a été étudié en complément du boîtier MCXBP de façon a proposer des voies avec des interfaces électriques différentes et toutes isolées.

Les cartes mezzanines existent pour les interfaces suivantes :


- RS232 isolé
- RS422 isolé
- RS485 isolé
- Boucle de courant isolé

V.2. CONFIGURATION

B.1.1 Les commutateurs

Le boîtier MCXBPMR dispose en face arrière de deux blocs de commutateurs. Le premier, qui comporte 4 mini-commutateurs permet d'affecter un numéro d'unité au boîtier. Le second, qui comporte 8 mini-commutateurs permet d'accorder la ligne de communication entre la carte MCXcPCI/BP-00 et l'ensemble formé par les boîtiers MCXBPMR.

Les illustrations ci-dessous donnent la configuration du bloc de 4 mini-commutateurs pour chacun des boîtiers.

Le bloc de huit mini-commutateurs du dernier boîtier de connexion en ligne doit absolument avoir tous les mini-commutateurs en position ON. Les blocs de huit mini-commutateurs sur les autres boîtiers doivent être OFF.

Le point sur les deux commutateurs situés en face avant ne doit pas être visible, sauf pour des cas particuliers (voir paragraphe « Attribution des signaux sur les connecteur »).

B.1.2 Vérification de la configuration

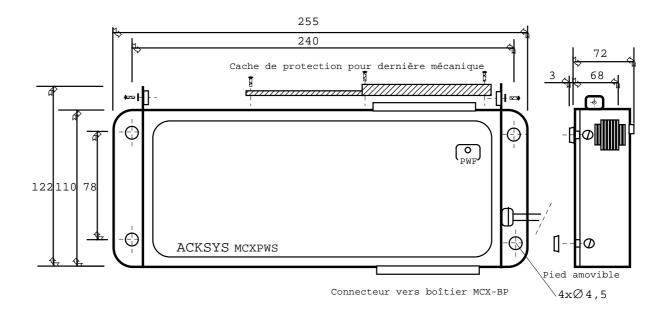
Tous les modules MRxxxISO disposent d'une led POWER indiquant si le module est correctement alimenté.

Vérification de la configuration en mode built-in firmware

Si, lors de l'autotest effectué à la mise sous tension, les leds de la carte MCXcPCI/0 affichent le code binaire 81h alors c'est que la configuration des boîtiers d'extension MCXBPMR n'est pas correcte. Si un autre code d'erreur est affiché, il est indispensable d'arrêter la machine et de consulter votre revendeur qui prendra toutes les dispositions pour vous dépanner le plus rapidement possible.

Vérification de la configuration en mode MCXDOS

Aucune vérification n'est effectuée sur la configuration des boîtiers MCXBPMR si la carte MCXcPCI/BP est configurée en mode MCXDOS ou en mode « stand-alone ».


V.2. INSTALLATION

Une fois la carte montée dans la machine, il convient de raccorder (**hors tension**) le câble (rond 80 points blindé) entre la carte MCXcPCI/BP et le premier dispositif de connexion MCXBPMR.

Si vous envisagez de raccorder au moins deux boîtiers de connexion MCXBPMR, vous devez vous procurer l'alimentation auxiliaire externe MCX-PWS qui évitera de surcharger l'alimentation de votre système (cette alimentation est automatiquement intégrée dans ces configurations).

Cette alimentation se présente sous la forme d'un boîtier de connexion et doit être insérée au milieu de la chaîne formée par les boîtiers MCXBPMR. Cette alimentation doit enfin être raccordée au secteur.

NE JAMAIS BRANCHER OU DEBRANCHER LES UNITES ENTRE ELLES LORSQUE VOTRE SYSTEME OU L'ALIMENTATION MCX-PWS EST SOUS TENSION.

ALIMENTATION AUXILIAIRE MCXPWS

COTES EN mm

POIDS = 1728 g + 22 g (caches de protection connecteurs)

V.2. LA CARTE MEZZANINE D'INTERFACE MR232ISO

La carte MR232ISO permet d'avoir une liaison série avec une couche physique RS232. Les signaux sont isolés par optocoupleurs, et l'alimentation de l'interface ligne RS232 est isolée galvaniquement.

B.1.1 Caractéristiques

Isolement galvanique:	2000 Veff minimum.		
Signaux convertis en permanence	Tx, Rx		
Signal sortant converti paramétrable par interrupteurs	RTS ou DTR ou TXCLK		
Signal entrant converti paramétrable par interrupteurs	CTS ou DCD ou RI ou DSR ou RXCLK ou TXCLK-I		
Débit maximum	230 Kbps		
Visualisation par DEL	POWER (Alimentation) TX (Signal TX) RX (Signal RX) CtrlOUT (Signal sortant) CtrlIN (Signal entrant)		
Protections surtensions	ESD 15 KV Filtrage EMI/RFI		
Protection alimentation	Individuelle par polyswitch		
Consommation	145 mA max		
Connecteur de sortie	SUBD 25 FEMELLE Interface RS232 DTE		

B.1.2 Configuration

La configuration d'une carte MR232ISO se fait via 2 switchs implantés sur la carte, il est donc nécessaire de dévisser la carte pour la configurer.

	SW1	SW2
Signal sortant converti		
RTS (par défaut à la livraison)	on 1 2 3 4 5 6 7 8	on 1 2 3 4 5 6 7 8
DTR	on 1 2 3 4 5 6 7 8	on 1 2 3 4 5 6 7 8
TXCLK	on 1 2 3 4 5 6 7 8	on 1 2 3 4 5 6 7 8

	SW1	SW2
Signal entrant converti		
CTS (par défaut à la livraison)	on 1 2 3 4 5 6 7 8	on 1 2 3 4 5 6 7 8
DCD	on 1 2 3 4 5 6 7 8	on 1 2 3 4 5 6 7 8
RI	on 1 2 3 4 5 6 7 8	on 1 2 3 4 5 6 7 8
DSR	on 1 2 3 4 5 6 7 8	on 1 2 3 4 5 6 7 8
TXCLK-I	on 1 2 3 4 5 6 7 8	on 1 2 3 4 5 6 7 8
RXCLK	on 1 2 3 4 5 6 7 8	on 1 2 3 4 5 6 7 8

B.1.3 Attribution des signaux sur le connecteur

Les signaux RS232 sont répartis de la manière suivante sur le connecteur :

	Connecteur SUBD 25 femelle						
Broche N°	Direction	Nom	Fonction				
1	I	PGND	Terre				
2	О	TXD	Emission de données				
3	I	RXD	Réception de données				
4(*)	О	RTS	RTS				
5(*)	I	CTS	CTS				
6(*)	I	DSR	DSR				
7	I	GNDI	Masse isolée				
8(*)	I	DCD	DCD				
9		NC	Non connecté				
10		NC	Non connecté				
11		NC	Non connecté				
12		NC	Non connecté				
13		NC	Non connecté				
14		NC	Non connecté				
15(*)	I	TXCLK-I	Horloge Tx entrante				
16		NC	Non connecté				
17(*)	I	RXCLK	Horloge Rx				
18		NC	Non connecté				
19		NC	Non connecté				
20(*)	О	DTR	DTR				
21		NC	Non connecté				
22(*)	I	RI	RI				
23		NC	Non connecté				
24(*)	О	TXCLK	Horloge Tx sortante				
25	I	GNDI	Masse isolée				

I : Signaux en entrée.

O: Signaux en sortie.

(*) Signaux convertis selon positions switchs SW1 et SW2.

V.2. LA CARTE MEZZANINE D'INTERFACE MR400ISO

La carte MR400ISO permet d'avoir une liaison série avec une couche physique RS422/485. Les signaux sont isolés par optocoupleurs, et l'alimentation de l'interface ligne RS422/485 est isolée galvaniquement.

B.1.1 Caractéristiques

Isolement galvanique	2000 Veff minimum.
Signaux convertis en permanence	Tx, Rx
Signal sortant converti paramétrable	Par cavalier : RTS ou TxCLK
Signal entrant converti paramétrable	Par cavalier : CTS ou RxCLK
Débit maximum	5 Mbps
Visualisation par DELs	POWER (Alimentation) TX (Signal TX) RX (Signal RX) RTS (Signal sortant) CTS (Signal entrant)
Protections surtensions	ESD 15 KV. Filtrage EMI/RFI
Protection alimentation	Individuelle par polyswicth
Connecteur de sortie	SUBD 9 FEMELLE Interface RS422/485
Consommation	100 mA max

B.1.2 Configuration

La configuration du mode de fonctionnement d'une carte d'interface MR400ISO se fait via un DIP-switchs 6 points en façade.

Deux cavaliers implantées sur la carte permettent de configurer les signaux de contrôles (entrant et sortant).

LE DIP SWITCH 6 points (tous sur OFF à la livraison)						
Type de transmission	Retournement ⁽¹⁾	Polarisation de ligne	Terminaison de Ligne			
RS422 4 fils « Maître »						
1 2 3 4 5 6						
	Par TXD	Présente	Connectée			
RS422 4 fils « Esclave »	1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6			
RS485 2 fils sans echo						
ON	Par RTS	Absente	Déconnectées			
1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6			
RS485 2 fils avec écho						
1 2 3 4 5 6						

(1) Le firmware de la carte MCXcPCI ne peut pas générer le signal RTS pour le retournement en RS485 et RS422 esclave, il conviendra alors dans ce cas de positionner SW-3 sur ON.

La position du switch en mode RS422 4 fils « Maître » est non significative.

LE CAVALIER J2 : Paramétrage du signal sortant

J2 en 1-2 : RxCLK J2 en 2-3 : CTS (à la livraison)

LE CAVALIER J3: Paramétrage du signal entrant

J3 en 1-2 : TxCLK J3 en 2-3 : RTS (à la livraison) **B.1.3** Attribution des signaux sur le connecteur

Les signaux RS422 et RS485 sont répartis de la façon suivante sur le connecteur SUBD 9 points femelle :

Connecteur SUB 9 femelle								
MODE 422			MODE 485					
Broche N°	Signal	Fonction	Broche N°	Signal	Fonction			
1	CTSA	CTS ou RxClk	1	CTSA	CTS ou RxClk			
2	RxA	Réception (A')	2	TRxA	Réception/Emission (AA')			
3	TxA	Emission (A)	3	Rés.	Réservé			
4	RTSA	RTS ou TxClk	4	RTSA	RTS ou TxClk			
5	GND	Masse	5	GND	Masse			
6	CTSB	CTS ou RxClk	6	CTSB	CTS ou RxClk			
7	TxB	Emission (B)	7	Rés.	Réservé			
8	RxB	Réception (B')	8	TRxB	Réception/Emission (BB')			
9	RTSB	RTS ou TxClk	9	RTSB	RTS ou TxClk			

Attention : si la voie est programmée en mode « retournement par RTS » (voir documentation sur le driver qui pilote la carte), le signal RTS sera celui généré automatiquement par la carte.

V.2. LA CARTE MEZZANINE D'INTERFACE MRBDC

La carte MRBdc permet d'avoir une liaison série avec une couche physique boucle de courant. Les signaux sont isolés par optocoupleurs, et l'alimentation de l'interface ligne est isolée galvaniquement.

B.1.1 Caractéristiques

Isolement galvanique	2000 Veff minimum.
Signaux convertis en permanence	Tx, Rx
Paramétrage de l'état du courant de boucle à l'état de repos par cavalier	Cavalier JP1
Paramétrage des boucles en mode ACTIF ou PASSIF	Par strap sur le connecteur SUBD 25
Débit maximum	57.6 Kbps
Visualisation par DELs	POWER (Alimentation) TX (Signal TX) RX (Signal RX)
Connecteur de sortie	SUBD 25 FEMELLE
Consommation module	Non communiquée

B.1.2 Configuration

L'état de la boucle de courant au repos se configure via des cavaliers sur la carte et des straps de câblage sur le connecteur SUBD 25 points. Attention, il est nécessaire de dévisser la carte d'interface pour configurer les cavaliers.

JP1 : CONFIGURATION DE L'ETAT DE LA BOUCLE AU REPOS		
MARK :Ibc > 12mA	MARK: Ibc < 3mA	
Courant de boucle présent à l'état MARK (REPOS ou INACTIF)	Courant de boucle absent à l'état MARK (REPOS ou INACTIF)	
1 2 3 4 5 6 JP1	1 2 3 • 1 4 5 6 JP1	
	(A la livraison)	

STRAP : CONFIGURATION DU MODE ACTIF ou PASSIF DE CHAQUE BOUCLE			
MODE	BOUCLE TX	BOUCLE RX	
ACTIF	STRAP 6-7 et 21-22	STRAP 10-11 et 24-25	
PASSIF	STRAP 21-20	STRAP 24-23	

B.1.3 Attribution des signaux sur le connecteur

Les signaux de la boucle de courant sont répartis de la façon suivante sur le connecteur SUBD 25 points :

Connecteur SUBD 25 femelle		
BROCHE N°	NOM	FONCTION
1	PGND	TERRE DE PROTECTION
2	NC	NON CONNECTE
3	NC	NON CONNECTE
4	NC	NON CONNECTE
5	NC	NON CONNECTE
6	VBCTX	CABLAGE STRAP
7	VBCTX1	CABLAGE STRAP
8	+TX	Emission données
9	-TX	Emission données
10	VBCRX	CABLAGE STRAP
11	VBCRX1	CABLAGE STRAP
12	+RX	Réception données
13	-RX	Réception données
14	NC	NON CONNECTE
15	NC	NON CONNECTE
16	NC	NON CONNECTE
17	NC	NON CONNECTE
18	NC	NON CONNECTE
19	NC	NON CONNECTE
20	-TXR1	CABLAGE STRAP
21	-TXR	CABLAGE STRAP
22	GNDI	CABLAGE STRAP
23	-RXR1	CABLAGE STRAP
24	RXR	CABLAGE STRAP
25	GNDI	CABLAGE STRAP

LES ANNEXES

ANNEXE A POUR ECRIRE UN PILOTE DE PERIPHERIQUE

Les informations fournies dans cette annexe donnent au programmeur tous les points d'entrées de la carte depuis le P.C, autrement dit tout le plan d'adressage de la carte depuis le P.C.

A.1 GENERALITES

Le dialogue entre la carte et le PC est assuré par les mécanismes suivants :

Une mémoire double accès de 32 Ko permettant l'échange bidirectionnel d'informations entre le P.C. et la carte.

Une interruption carte vers PC.

Une interruption PC vers carte.

Une FIFO de 512 octets accessible en écriture côté carte, et en lecture côté PC, constituant une alternative à la mémoire double accès pour l'échange d'informations unidirectionnel de la carte vers le PC.

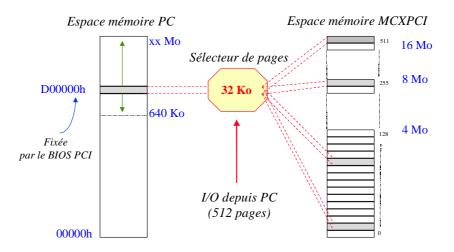
Un ensemble de registres d'entrées-sorties qui permet diverses opérations :

Lecture de la FIFO

Lecture statuts de la FIFO (Vide, pleine, non vide ...)

Lecture position de commutateur de mode (SW1-1 et SW1-2)

Désactivation de l'interruption envoyée par la carte


Reset de la carte

. . .

A.2 ADRESSAGE DE LA MEMOIRE DOUBLE ACCES

L'adresse de la mémoire double accès de 32 Ko est fixée par le BIOS PCI lors du démarrage de la machine, par exemple D00000h. Cette adresse est lisible dans le registre de configuration PCI appelé BAR1 (offset 14h).

Cette mémoire est en fait une page de l'espace mémoire de la carte, fixé par un numéro de page (voir illustration ci-dessous et paragraphe A.3).

Adresse fenêtre	N° PAGE
0000:0000	00
0800:0000	01
1000 : 0000	02
1800:0000	03
2000:0000	04
2800:0000	05
3000 : 0000	06
3800:0000	07
4000:0000	08
4800 : 0000	09
5000:0000	0A
5800:0000	0B
6000 : 0000	0C
6800 : 0000	0D
7000 : 0000	0E
7800 : 0000	0F

Adresse	N°PAGE
Fenêtre	
8000:0000	10
8800:0000	11
9000 : 0000	12
9800 : 0000	13
A000:0000	14
A800:0000	15
B000:0000	16
B800:0000	17
C000:0000	18
C800:0000	19
D000:0000	1A
D800:0000	1B
E000:0000	1C
E800:0000	1D
F000:0000	1E
F800:0000	1F
•••	

Le numéro de page est fixé par la carte après la phase d'autotest (Page 1Ah) et peut être modifié par le P.C (Voir paragraphe A.3) ou la carte elle même (Voir annexe B).

La mémoire double accès est adressée depuis le P.C comme de la mémoire standard sans aucune restriction, tous les modes d'accès étant supportés (8, 16 et 32 bits alignés ou pas).

A.3 ADRESSAGE DES REGISTRES D'ENTREES SORTIES

L'adresse de base d'entrées-sorties est fixée par le BIOS PCI lors du démarrage de la machine, par exemple C000h. Cette adresse est lisible dans le registre de configuration PCI appelé BAR0 (offset 10h).

En lecture adresse Base + 0 – Registre de données de la FIFO

D0 à D7 Ce registre permet de lire le contenu de la FIFO qui a précédemment été rempli par la carte (ce FIFO a une profondeur de 512 octets). Si la FIFO est vide, la valeur obtenue est 0FFH (255).

En écriture adresse Base + 0 – Reset carte

D0 à D7 L'écriture à cette adresse provoque un reset immédiat de la carte. L'état des bits D0 à D7 n'est pas significatif

En écriture/Lecture adresse Base + 1 - Ecriture/lecture N° de page

Les bits D0 à D7 permettent de sélectionner/lire une page logique de 32 Ko de la mémoire de la carte qui sera accessible dans la fenêtre du PC.

D0	Adresse page logique - A15.
D1	Adresse page logique - A16.
D2	Adresse page logique - A17.
D3	Adresse page logique - A18.
D4	Adresse page logique - A19.
D5	Adresse page logique – A20.
D6	Adresse page logique – A21.
D7	Adresse page logique – A22.

Le bit d'adresse A23 est défini par écriture du bit D0 à l'adresse Base + 5. Attention, la première écriture dans ce registre désactive le choix de page fait par la carte lors de son initialisation.

En écriture adresse Base + 2 - Interruption PC VERS CARTE

En écriture adresse Base + 3 - DESACTIVATION IRQ CARTE VERS PC.

D0 à D7 Une écriture dans ce registre a pour effet de désactiver l'interruption générée par la carte et destinée au PC. L'état des bits de données n'est pas significatif.

En lecture adresse Base + 3 - STATUS FIFO

D0 Bit MCX-TO-PC-INT

Ce bit indique l'état du signal d'interruption généré par la carte vers le PC.

0: Interruption inactive.

1 : Interruption active.

D1 Bit FIFO-EMPTY

à 0, il indique que la FIFO est vide, à 1, il indique que la FIFO contient au moins un octet.

D2 Bit MCX-INT

à 1, il indique que la carte n'a pas encore désactivé l'interruption générée par le PC.

D3 Bit WIN-SET

à 0, ce bit indique que la carte a bien positionné sa page logique initiale et que les données lues dans la fenêtre du PC sont valides. A 1, il indique que cette opération n'a pas encore été réalisée ou bien que le PC a sélectionné une nouvelle page logique dans la fenêtre.

D4 Bit SW1-1

à 1, il indique que le commutateur SW1-1 de la carte est en position OFF; dans le cas contraire, il est en position ON.

D5 Bit SW1-2

à 1, il indique que le commutateur SW1-2 de la carte est en position OFF ; dans le cas contraire, il est en position ON

D6, D7 Non significatifs

En lecture/Ecriture adresse Base +5 – Page logique bit A23

D1 à D7 Non significatifs

En lecture/Ecriture adresse Base +7 - Validation de l'interruption carte vers PC

D0 = 1 Interruption autorisée D0 = 0 Interruption interdite

D1 à D7 Non significatifs

A.4 INTERRUPTION CARTE VERS P.C.

L'interruption utilisée par la carte dans le P.C. est fixée par le BIOS PCI lors du démarrage de la machine, par exemple IRQ12. Cette interruption est lisible dans le registre de configuration PCI appelé INTCFG (offset 3Ch).

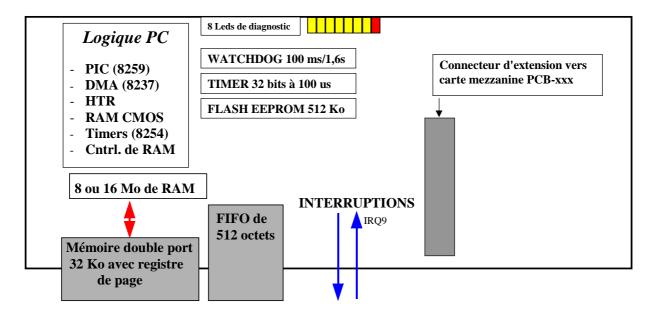
Cette interruption est générée par la carte par écriture dans un registre situé dans le plan d'adressage d'entrées sorties de la carte. Cette interruption peut être désactivée par le P.C par une écriture dans le registre d'entrées sorties à l'adresse base +3.

A.5 INTERRUPTION P.C. VERS CARTE

Le PC peut,

par écriture aux offsets 0 ou 1 de la mémoire double accès par écriture dans le port d'entrées sorties à l'adresse base+2,

générer une interruption sur la ligne IRQ9 de la carte.


ANNEXE B POUR PROGRAMMER DANS LA CARTE

Ces informations sont destinées uniquement à l'écriture de programmes internes à la carte. Elles donnent donc au programmeur tout le plan d'adressage interne spécifique à la carte :

Adressage leds, watchdog, timer100us, interruption, FIFO ...

Adressage carte mezzanine PCB-xxx

Toutes les informations relatives au bloc logique P.C sont dans le plan d'adressage standard du P.C et ne sont donc pas fournies dans cette annexe.

B.1 ADRESSAGE DES REGISTRES DU BOITIER MCXBP OU MCXBPMR

Notez qu'il est indispensable de disposer de la documentation « SCC programmer's guide » pour programmer la carte d'extension.

Tous les registres documentés dans ce paragraphe sont dans le plan d'adressage d'entrées-sorties interne à la carte MCXcPCI/BP(MR).

Le champ d'adresses I/O et l'interruption utilisés par chaque boîtier sont les suivantes :

- Boîtier N°1 : Adresse Base 600h profondeur 1Fh, IRQ3
- Boîtier N°2 : Adresse Base 620h profondeur 1Fh, IRO4
- Boîtier N°3: Adresse Base 640h profondeur 1Fh, IRQ5
- Boîtier N°4: Adresse Base 660h profondeur 1Fh, IRQ6
- Boîtier N°5 : Adresse Base 680h profondeur 1Fh, IRQ7
- Boîtier N°6 : Adresse Base 6A0h profondeur 1Fh, IRQ11
- Boîtier N°7 : Adresse Base 6C0h profondeur 1Fh, IRQ12
- Boîtier N°8 : Adresse Base 6E0h profondeur 1Fh, IRQ14 ou IRQ15

Ces champs d'adresses I/O donnent accès aux registres de chacun des contrôleurs de communication (SCC 85C30) et à divers registres de configuration et de statut.

B.1.1 Adressage des SCC

Dans chaque boîtier, 4 SCC 85C30 (ou 85C230) contrôlent les 8 voies, les adresses de chaque SCC sont réparties comme suit :

```
* SCC # 1
  - Adresse Base + 00h
                             Voie 2, registre de commande - (Lecture/écriture).
                             Voie 2, registre de données - (Lecture/écriture).
  - Adresse Base + 01h
                             Voie 1, registre de commande - (Lecture/écriture).
  - Adresse Base + 02h
  - Adresse Base + 03h
                             Voie 1, registre de données - (Lecture/écriture).
* SCC # 2
  - Adresse Base + 04h
                             Voie 4, registre de commande - (Lecture/écriture).
  - Adresse Base + 05h
                             Voie 4, registre de données - (Lecture/écriture).
  - Adresse Base + 06h
                             Voie 3, registre de commande - (Lecture/écriture).
                             Voie 3, registre de données - (Lecture/écriture).
  - Adresse Base + 07h
* SCC # 3
  - Adresse Base + 08h
                             Voie 6, registre de commande - (Lecture/écriture).
                             Voie 6, registre de données - (Lecture/écriture).
  - Adresse Base + 09h
  - Adresse Base + 0Ah
                             Voie 5, registre de commande - (Lecture/écriture).
                             Voie 5, registre de données - (Lecture/écriture).
   - Adresse Base + 0Bh
  SCC # 4
  - Adresse Base + 0Ch
                             Voie 8, registre de commande - (Lecture/écriture).
  - Adresse Base + 0Dh
                             Voie 8, registre de données - (Lecture/écriture).
                             Voie 7, registre de commande - (Lecture/écriture).
  - Adresse Base + 0Eh
   - Adresse Base + 0Fh
                             Voie 7, registre de données - (Lecture/écriture).
```

B.1.2 Adressage divers

* Adresse Base + 10h - Registre de Polling (lecture uniquement):

Le registre de polling permet d'identifier les SCC dont la ligne d'interruption est active.

D0 à 1	. Le SCC # 1 est actif. . Le SCC # 2 est actif.
D4	Bit PWEXT, ce bit indique, lorsqu'il est à 0, qu'une alimentation extérieure MCX-PWS est connectée à la chaîne des boîtiers de connexion. Dans le cas contraire, ce bit est à 1 indiquant qu'il n'y a pas d'alimentation ou que cette dernière est hors tension.
D6	Etat de la source d'horloge (BP rev D et +) : - 1 : horloge SCC = 16 MHz, - 0 : horloge SCC = 14,7456 MHz.
D7	Terminal Count (DMA) Ce bit indique, lorsqu'il est positionné à 1, qu'un cycle DMA concernant une voie de ce boîtier vient de se terminer. Ce bit est automatiquement remis à zéro par une lecture à l'adresse du registre de polling + 1 (Base + 11h). Attention, il n'est pas possible, à partir de ce registre, d'identifier le canal de DMA qui vient de terminer son cycle lorsque plusieurs cycles se terminent en même temps ; il faut alors consulter le registre de status des différents contrôleurs de DMA. Enfin, le "Terminal count" génère une interruption vers la

carte MCXcPCI/0 sur la même ligne que les SCC.

Ces bits sont tous à zéro après un RESET SCC.

* Adresse Base + 11h - RAZ du bit T/C (Lecture uniquement):

Une lecture à cette adresse effectue la remise à zéro du bit T/C latché pour la lecture au niveau du registre de polling.

* Adresse Base + 12h - Lecture RING (Lecture uniquement):

Ce registre n'est implanté que dans les versions E et suivantes des boîtiers. Il permet la lecture de l'état du signal RING INDICATOR lorsque les voies considérées fonctionnent en mode synchrone.

Chaque bit à 1 de ce registre indique que le signal RING est actif sur la voie associée à ce bit (Bit 0 = Voie 1, Bit 1 = Voie 2, etc.).

* Adresse Base + 14h - Configuration RS232/RS422 (Ecriture uniquement):

Les 8 bits de ce registre permettent de configurer chacune des 8 voies d'un boîtier MCXBP (et non MCXBPMR !) en RS232 ou bien RS422.

D0	Canal 1.
D1	Canal 2.
D2	Canal 3.
D3	Canal 4.
D4	Canal 5.
D5	Canal 6.
D6	Canal 7.
D7	Canal 8.

Chaque bit positionné à 1 force le canal considéré à travailler en mode RS422 plutôt qu'en mode RS232.

* Adresse Base + 15h - Configuration DMA / Clock (Ecriture uniquement):

Les trois premiers bits de ce registre (D0, D1 et D2) permettent d'assigner les 6 canaux DMA de la carte aux voies 1, 2, 3 de la façon suivante :

D0 à 1	Voie 1 avec DRQ1 (Emission) et DRQ2 (Réception).
D1 à 1	Voie 2 avec DRQ3 (Emission) et DRQ5 (Réception).
D2 à 1	Voie 3 avec DRQ6 (Emission) et DRQ7 (Réception). Lorsque ces bits sont à 0, les canaux de DMA associés sont déconnectés des lignes de communication. Ceci permet, entre autre, d'utiliser la voie 1 du premier boîtier en mode DMA, mais d'utiliser plutôt les voies 2 et 3 du second boîtier en mode DMA.
	Attention, les canaux DMA DRQ1, DRQ2 et DRQ3 sont des canaux 8 bits tandis que les canaux DRQ5, DRQ6 et DRQ7 sont des canaux 16 bits.
D3	Commande LED Power Fail (Boîtier MCXBP uniquement). Ce dernier bit, lorsqu'il est positionné à 1, commande l'allumage de la LED Power Fail sur le boîtier MCXBP.
D7	Commande de la source d'horloge des SCC : - 0 pour 16 MHz, - 1 pour 14,7456 MHz. Seulement sur les boîtiers révisions D et postérieures

B.1.3 Interruptions et DMA

Les quatre SCC du boîtier N°1 pilote la ligne d'interruption IRQ3 interne à la carte MCXcPCI/0.

Les quatre SCC du boîtier N°2 pilote la ligne d'interruption IRQ4 interne à la carte MCXcPCI/0.

Les quatre SCC du boîtier N°3 pilote la ligne d'interruption IRQ5 interne à la carte MCXcPCI/0.

Les quatre SCC du boîtier N°4 pilote la ligne d'interruption IRQ6 interne à la carte MCXcPCI/0.

Les quatre SCC du boîtier $N^{\circ}5$ pilote la ligne d'interruption IRQ7 interne à la carte MCXcPCI/0.

Les quatre SCC du boîtier N°6 pilote la ligne d'interruption IRQ11 interne à la carte MCXcPCI/0.

Les quatre SCC du boîtier N°7 pilote la ligne d'interruption IRQ12 interne à la carte MCXcPCI/0.

Les quatre SCC du boîtier N°8 pilote la ligne d'interruption IRQ14 ou IRQ15 interne à la carte MCXcPCI/0.

Les paires de canaux DMA

- DRQ1/DRQ2
- DRQ3/DRQ5
- DRQ6/DRQ7

Sont attribuées aux voies spécifiées par le registre Adresse Base + 15h - Configuration DMA / Clock.

Attention, il convient de d'assurer que les signaux d'interruption et DMA n'ont pas ete isoles via le groupe de mini-interrupteurs SW1 et SW2 de la carte PCB/BP.

B.2 INSTALLATION DE LA CARTE COMPACT FLASH

Les cartes CF (CompactFlash) sont le plus petit dispositif amovible de mémoire de masse du monde. Présentées pour la première fois en 1994, les cartes CFTM pèsent moins que 8 grammes (0.5 once) et sont de la taille d'une boîte d'allumettes. Elles sont compatibles avec les PCMCIA-ATA et fournissent les mêmes fonctionnalités. De 43mm (1,7 ") x 36mm (1,4 ") x 3.3mm (0,13 "), l'épaisseur de cette carte est de la moitié de celle d'une carte actuelle du type II PCMCIA. En fait, elle a un volume du quart de celui d'une carte PCMCIA. Comparée à une carte de 68-broches PCMCIA, une carte CompactFlash a 50 bornes mais se conforme entièrement aux spécifications d'ATA.

Le socket destiné à recevoir une carte compact FLASH est un connecteur type I. Il supporte des cartes FLASH type I (3.3 mm d'épaisseur) de capacité comprise entre 4Mb et 192 Mb.

La carte compact FLASH est destinée à recevoir le système d'exploitation s'exécutant sur la carte. Pour installer ce système, il convient de se procurer un adaptateur à brancher sur l'un des contrôleurs IDE de votre P.C et de suivre la procédure d'installation accompagnant le système.

Attention, ne pas manipuler la carte COMPACT FLASH lorsque la carte est sous tension.

FICHE ERREUR C-1

ANNEXE C FICHE ERREUR

Nous avons besoin de vos commentaires et suggestions pour améliorer la qualité et la facilité d'utilisation de nos documentations.

Nous vous serions très reconnaissants de remplir cette fiche d'appréciation, et de nous la retourner.

Nous vous en remercions par avance.

SOCIETE:	
Utilisateur:	
Tél.	
Adresse:	

Indiquez clairement la version et le numéro de série de la carte, la version des logiciels et de la documentation dont vous parlez :

Carte MCXcPCI/0	
Carte PCB-BP	
Boîtier MCXBP	
Boîtier MCXBPMR	
EEPROM Révision	
Documentation Révision	

Veuillez donner une note de 0 à 10 pour chacune des caractéristiques suivantes :							
Format		Présentation		Organisation			
Clarté		Précision		Explications			
Erreurs:							
Si vous avez trouvé des erreurs dans cette documentation, veuillez spécifier la page et détailler la nature de l'erreur, ou noter les modifications sur les pages concernées et ajouter des photocopies de ces pages à la présente fiche.							
	•••••		•••••				